122 Matrices équivalentes. Matrices semblables. Applications.

Jonathan Loupia jonas001@free.fr http://jonas001.free.fr/agreg/index2.htm

Plan:

- 1) Matrices équivalentes
 - déf (+ relation d'équivalence)
- sur un corps $[F1\ p51]$, classification par le rang (appl : matrices à diagonales dominantes inversibles [G1])
 - dans un anneau, facteurs invariants [F1 p49] ou [Ser]
- 2) Matrices semblables
 - déf (+ relation d'équivalence)
- premières prop (semblables sur un sur-corps [G1], même trace, poly car, etc. avec réciproque en dim 2 et 3)
 - invariants de similitude [F1 p143] (appl : M et tM semblables; ex : matrices compagnons)
- 3) Représentants particuliers
- matrices diagonalisables, trigonalisables [F1 167] (appl : puissance de matrice, exponentielle de matrice, densité de $Diag_n(\mathbb{C})$ dans $M_n(\mathbb{C})$)
- matrices orthogonalement semblables [F2] (matrices "normales" et orthogonales; appl : $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ connexes)

Développements :

- densité de $Diag_n(\mathbb{C})$ dans $M_n(\mathbb{C})$
- critère de diagonalisation des endomorphismes [F1 167]
- $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ connexes et compacts (*)
- M et N semblables ssi elles ont les mêmes invariants de similitude

Bibliographie

- Fresnel "Algèbre des matrices" [F1]
- Gourdon "Algèbre" [G1]
- Serre, "Les matrices, théorie et pratique" [Ser]
- [N]
- Fresnel "Espaces quadratiques, euclidiens, hermitiens" [F2]